You're viewing this item in the new Europeana website. View this item in the original Europeana.

Loewy coincident algebra and $QF$-3 associated graded algebra

We prove that an associated graded algebra $R_G$ of a finite dimensional algebra $R$ is $QF$ (= selfinjective) if and only if $R$ is $QF$ and Loewy coincident. Here $R$ is said to be Loewy coincident if, for every primitive idempotent $e$, the upper Loewy series and the lower Loewy series of $Re$ and $eR$ coincide. \endgraf $QF$-3 algebras are an important generalization of $QF$ algebras; note tha…