You're viewing this item in the new Europeana website. View this item in the original Europeana.

On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras

It is shown that every almost linear Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal A$ into a unital $C^*$-algebra $\mathcal B$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^nu)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all unitaries $u \in \mathcal A$, all $y \in \mathcal A$, and all $n\in \mathbb{Z}$, and that every almost linear continuous Pexider mappin…