Minus total domination in graphs
A three-valued function $f\: V\rightarrow \{-1,0,1\}$ defined on the vertices of a graph $G=(V,E)$ is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. That is, for every $v\in V$, $f(N(v))\ge 1$, where $N(v)$ consists of every vertex adjacent to $v$. The weight of an MTDF is $f(V)=\sum f(v)$, over all vertices $v\in V$. The minu…
- Xing, Hua-Ming
- Liu, Hai-Long
- minus domination
- total domination
- minus total domination
- model:article
- Xing, Hua-Ming
- Liu, Hai-Long
- minus domination
- total domination
- minus total domination
- model:article
- http://creativecommons.org/publicdomain/mark/1.0/
- false
- policy:public
- 861-870
- Czechoslovak Mathematical Journal | 2009 Volume:59 | Number:4
- uuid:2a616945-6330-4210-a9c5-7a55ee7a7bce
- https://cdk.lib.cas.cz/client/handle/uuid:2a616945-6330-4210-a9c5-7a55ee7a7bce
- uuid:2a616945-6330-4210-a9c5-7a55ee7a7bce
- bez média
- svazek
- eng
- eng
- Czech Republic
- 2021-06-01T12:19:28.026Z
- 2021-06-01T12:19:28.026Z