Skip to page contents
Europeana home
  • Home
  • Collections
  • Stories
  • For professionals
  • Log in / Join
Europeana home
  • Home
  • Collections
  • Stories
  • For professionals
  • For teachers
  • About
  • Help
  • Log in / Join
(opens in new window)
Public Domain (opens in new window)
Download Loading

Minus total domination in graphs

A three-valued function $f\: V\rightarrow \{-1,0,1\}$ defined on the vertices of a graph $G=(V,E)$ is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. That is, for every $v\in V$, $f(N(v))\ge 1$, where $N(v)$ consists of every vertex adjacent to $v$. The weight of an MTDF is $f(V)=\sum f(v)$, over all vertices $v\in V$. The minu…

  • Knihovna Akademie věd České republiky (opens in new window)
  • Xing, Hua-Ming
  • Liu, Hai-Long
  • minus domination
  • total domination
  • minus total domination
  • model:article
  • Knihovna Akademie věd České republiky (opens in new window)
  • Xing, Hua-Ming
  • Liu, Hai-Long
  • minus domination
  • total domination
  • minus total domination
  • model:article
  • Česká digitální knihovna
  • http://creativecommons.org/publicdomain/mark/1.0/
  • false
  • policy:public
  • 861-870
  • Czechoslovak Mathematical Journal | 2009 Volume:59 | Number:4
  • uuid:2a616945-6330-4210-a9c5-7a55ee7a7bce
  • https://cdk.lib.cas.cz/client/handle/uuid:2a616945-6330-4210-a9c5-7a55ee7a7bce
  • uuid:2a616945-6330-4210-a9c5-7a55ee7a7bce
  • bez média
  • svazek
  • eng
  • eng
  • Czech Republic
  • 336_CZ_DigitalLibrary_article
  • 2021-06-01T12:19:28.026Z
  • 2021-06-01T12:19:28.026Z