Equivalence bimodule between non-commutative tori.
The non-commutative torus $C^*(\mathbb{Z}^n,\omega )$ is realized as the $C^*$-algebra of sections of a locally trivial $C^*$-algebra bundle over $\widehat{S_{\omega }}$ with fibres isomorphic to $C^*(\mathbb{Z}^n/S_{\omega }, \omega _1)$ for a totally skew multiplier $\omega _1$ on $\mathbb{Z}^n/S_{\omega }$. D. Poguntke [9] proved that $A_{\omega }$ is stably isomorphic to $C(\widehat{S_{\omega …
- Oh, Sei-Qwon
- Park, Chun-Gil
- Morita equivalent
- twisted group $C^*$-algebra
- crossed product
- model:article
- Oh, Sei-Qwon
- Park, Chun-Gil
- Morita equivalent
- twisted group $C^*$-algebra
- crossed product
- model:article
- http://creativecommons.org/publicdomain/mark/1.0/
- false
- policy:public
- 289-294
- Czechoslovak Mathematical Journal | 2003 Volume:53 | Number:2
- uuid:235684c5-9414-4743-913b-1e5a859fadf6
- https://cdk.lib.cas.cz/client/handle/uuid:235684c5-9414-4743-913b-1e5a859fadf6
- uuid:235684c5-9414-4743-913b-1e5a859fadf6
- bez média
- svazek
- eng
- eng
- Czech Republic
- 2021-06-01T12:19:28.026Z
- 2021-06-01T12:19:28.026Z