Skip to page contents
Europeana home
  • Home
  • Collections
  • Stories
  • For professionals
  • Log in / Join
Europeana home
  • Home
  • Collections
  • Stories
  • For professionals
  • For teachers
  • About
  • Help
  • Log in / Join
(opens in new window)
Public Domain (opens in new window)
Download Loading

Equivalence bimodule between non-commutative tori.

The non-commutative torus $C^*(\mathbb{Z}^n,\omega )$ is realized as the $C^*$-algebra of sections of a locally trivial $C^*$-algebra bundle over $\widehat{S_{\omega }}$ with fibres isomorphic to $C^*(\mathbb{Z}^n/S_{\omega }, \omega _1)$ for a totally skew multiplier $\omega _1$ on $\mathbb{Z}^n/S_{\omega }$. D. Poguntke [9] proved that $A_{\omega }$ is stably isomorphic to $C(\widehat{S_{\omega …

  • Knihovna Akademie věd České republiky (opens in new window)
  • Oh, Sei-Qwon
  • Park, Chun-Gil
  • Morita equivalent
  • twisted group $C^*$-algebra
  • crossed product
  • model:article
  • Knihovna Akademie věd České republiky (opens in new window)
  • Oh, Sei-Qwon
  • Park, Chun-Gil
  • Morita equivalent
  • twisted group $C^*$-algebra
  • crossed product
  • model:article
  • Česká digitální knihovna
  • http://creativecommons.org/publicdomain/mark/1.0/
  • false
  • policy:public
  • 289-294
  • Czechoslovak Mathematical Journal | 2003 Volume:53 | Number:2
  • uuid:235684c5-9414-4743-913b-1e5a859fadf6
  • https://cdk.lib.cas.cz/client/handle/uuid:235684c5-9414-4743-913b-1e5a859fadf6
  • uuid:235684c5-9414-4743-913b-1e5a859fadf6
  • bez média
  • svazek
  • eng
  • eng
  • Czech Republic
  • 336_CZ_DigitalLibrary_article
  • 2021-06-01T12:19:28.026Z
  • 2021-06-01T12:19:28.026Z