Clean matrices over commutative rings
A matrix $A\in M_n(R)$ is $e$-clean provided there exists an idempotent $E\in M_n(R)$ such that $A-E\in \mathop{\rm GL}_n(R)$ and $\det E=e$. We get a general criterion of $e$-cleanness for the matrix $[[a_1,a_2,\cdots ,a_{n+1}]]$. Under the $n$-stable range condition, it is shown that $[[a_1,a_2,\cdots ,a_{n+1}]]$ is $0$-clean iff $(a_1,a_2,\cdots ,a_{n+1})=1$. As an application, we prove that th…
- Chen, Huanyin
- matrix
- clean element
- unit-regularity
- model:article
- Chen, Huanyin
- matrix
- clean element
- unit-regularity
- model:article
- http://creativecommons.org/publicdomain/mark/1.0/
- false
- policy:public
- 145-158
- Czechoslovak Mathematical Journal | 2009 Volume:59 | Number:1
- uuid:1d23596d-b551-4e42-a84d-c429eb62dd98
- https://cdk.lib.cas.cz/client/handle/uuid:1d23596d-b551-4e42-a84d-c429eb62dd98
- uuid:1d23596d-b551-4e42-a84d-c429eb62dd98
- bez média
- svazek
- eng
- eng
- Czech Republic
- 2021-06-01T12:19:28.026Z
- 2021-06-01T12:19:28.026Z