Skip to page contents
Europeana home
  • Home
  • Collections
  • Stories
  • For professionals
  • Log in / Join
Europeana home
  • Home
  • Collections
  • Stories
  • For professionals
  • For teachers
  • About
  • Help
  • Log in / Join
(opens in new window)
Public Domain (opens in new window)
Download Loading

Clean matrices over commutative rings

A matrix $A\in M_n(R)$ is $e$-clean provided there exists an idempotent $E\in M_n(R)$ such that $A-E\in \mathop{\rm GL}_n(R)$ and $\det E=e$. We get a general criterion of $e$-cleanness for the matrix $[[a_1,a_2,\cdots ,a_{n+1}]]$. Under the $n$-stable range condition, it is shown that $[[a_1,a_2,\cdots ,a_{n+1}]]$ is $0$-clean iff $(a_1,a_2,\cdots ,a_{n+1})=1$. As an application, we prove that th…

  • Knihovna Akademie věd České republiky (opens in new window)
  • Chen, Huanyin
  • matrix
  • clean element
  • unit-regularity
  • model:article
  • Knihovna Akademie věd České republiky (opens in new window)
  • Chen, Huanyin
  • matrix
  • clean element
  • unit-regularity
  • model:article
  • Česká digitální knihovna
  • http://creativecommons.org/publicdomain/mark/1.0/
  • false
  • policy:public
  • 145-158
  • Czechoslovak Mathematical Journal | 2009 Volume:59 | Number:1
  • uuid:1d23596d-b551-4e42-a84d-c429eb62dd98
  • https://cdk.lib.cas.cz/client/handle/uuid:1d23596d-b551-4e42-a84d-c429eb62dd98
  • uuid:1d23596d-b551-4e42-a84d-c429eb62dd98
  • bez média
  • svazek
  • eng
  • eng
  • Czech Republic
  • 336_CZ_DigitalLibrary_article
  • 2021-06-01T12:19:28.026Z
  • 2021-06-01T12:19:28.026Z