Discrete spectrum and principal functions of non-selfadjoint differential operator
In this article, we consider the operator $L$ defined by the differential expression \[ \ell (y)=-y^{\prime \prime }+q(x) y ,\quad - \infty < x < \infty \] in $L_2(-\infty ,\infty)$, where $q$ is a complex valued function. Discussing the spectrum, we prove that $L$ has a finite number of eigenvalues and spectral singularities, if the condition \[ \sup _{-\infty < x < \infty} \Big \lbrace \exp \big…
- Tunca, Gülen Başcanbaz
- Bairamov, Elgiz
- math
- non-selfadjoint differential operator
- spectral singularities
- Mathematics
- model:article
- Tunca, Gülen Başcanbaz
- Bairamov, Elgiz
- math
- non-selfadjoint differential operator
- spectral singularities
- Mathematics
- model:article
- http://creativecommons.org/publicdomain/mark/1.0/
- false
- policy:public
- 689-700
- Czechoslovak Mathematical Journal | 1999 Volume:49 | Number:4
- uuid:19bc4cb3-1f09-43fa-81a6-44363442643c
- https://cdk.lib.cas.cz/client/handle/uuid:19bc4cb3-1f09-43fa-81a6-44363442643c
- uuid:19bc4cb3-1f09-43fa-81a6-44363442643c
- bez média
- svazek
- eng
- eng
- Czech Republic
- 2021-06-01T12:19:28.026Z
- 2021-06-01T12:19:28.026Z