Skip to page contents
Europeana home
  • Home
  • Collections
  • Stories
  • For professionals
  • Log in / Join
Europeana home
  • Home
  • Collections
  • Stories
  • For professionals
  • For teachers
  • About
  • Help
  • Log in / Join
(opens in new window)
Public Domain (opens in new window)
Download Loading

Discrete spectrum and principal functions of non-selfadjoint differential operator

In this article, we consider the operator $L$ defined by the differential expression \[ \ell (y)=-y^{\prime \prime }+q(x) y ,\quad - \infty < x < \infty \] in $L_2(-\infty ,\infty)$, where $q$ is a complex valued function. Discussing the spectrum, we prove that $L$ has a finite number of eigenvalues and spectral singularities, if the condition \[ \sup _{-\infty < x < \infty} \Big \lbrace \exp \big…

  • Knihovna Akademie věd České republiky (opens in new window)
  • Tunca, Gülen Başcanbaz
  • Bairamov, Elgiz
  • math
  • non-selfadjoint differential operator
  • spectral singularities
  • Mathematics
  • model:article
  • Knihovna Akademie věd České republiky (opens in new window)
  • Tunca, Gülen Başcanbaz
  • Bairamov, Elgiz
  • math
  • non-selfadjoint differential operator
  • spectral singularities
  • Mathematics
  • model:article
  • Česká digitální knihovna
  • http://creativecommons.org/publicdomain/mark/1.0/
  • false
  • policy:public
  • 689-700
  • Czechoslovak Mathematical Journal | 1999 Volume:49 | Number:4
  • uuid:19bc4cb3-1f09-43fa-81a6-44363442643c
  • https://cdk.lib.cas.cz/client/handle/uuid:19bc4cb3-1f09-43fa-81a6-44363442643c
  • uuid:19bc4cb3-1f09-43fa-81a6-44363442643c
  • bez média
  • svazek
  • eng
  • eng
  • Czech Republic
  • 336_CZ_DigitalLibrary_article
  • 2021-06-01T12:19:28.026Z
  • 2021-06-01T12:19:28.026Z