Invariants of finite groups generated by generalized transvections in the modular case
We investigate the invariant rings of two classes of finite groups $G\leq{\rm GL}(n,F_q)$ which are generated by a number of generalized transvections with an invariant subspace $H$ over a finite field $F_q$ in the modular case. We name these groups generalized transvection groups. One class is concerned with a given invariant subspace which involves roots of unity. Constructing quotient groups an…
- Han, Xiang
- Nan, Jizhu
- Gupta, Chander K
- matematika
- mathematics
- invariant ring
- transvection
- generalized transvection group
- 13
- 51
- Mathematics
- model:article
- Han, Xiang
- Nan, Jizhu
- Gupta, Chander K
- matematika
- mathematics
- invariant ring
- transvection
- generalized transvection group
- 13
- 51
- Mathematics
- model:article
- http://creativecommons.org/publicdomain/mark/1.0/
- false
- policy:public
- 655-698
- Czechoslovak Mathematical Journal | 2017 Volume:67 | Number:3
- uuid:07bd0c51-a1b9-45eb-9404-5b578be8fff9
- https://cdk.lib.cas.cz/client/handle/uuid:07bd0c51-a1b9-45eb-9404-5b578be8fff9
- uuid:07bd0c51-a1b9-45eb-9404-5b578be8fff9
- issn:0011-4642
- bez média
- svazek
- eng
- eng
- Czech Republic
- 2021-06-01T12:19:28.026Z
- 2021-06-01T12:19:28.026Z