Multiresolution analysis and Radon measures on a locally compact Abelian group
A multiresolution analysis is defined in a class of locally compact abelian groups $G$. It is shown that the spaces of integrable functions $\mathcal L^p(G)$ and the complex Radon measures $M(G)$ admit a simple characterization in terms of this multiresolution analysis.
- Galindo, Félix
- Sanz, Javier
- multiresolution analysis
- Radon measures
- topological groups
- model:article
- Galindo, Félix
- Sanz, Javier
- multiresolution analysis
- Radon measures
- topological groups
- model:article
- http://creativecommons.org/publicdomain/mark/1.0/
- false
- policy:public
- 859-871
- Czechoslovak Mathematical Journal | 2001 Volume:51 | Number:4
- uuid:05a4f09b-9d54-4b74-a043-2066b2d60d8b
- https://cdk.lib.cas.cz/client/handle/uuid:05a4f09b-9d54-4b74-a043-2066b2d60d8b
- uuid:05a4f09b-9d54-4b74-a043-2066b2d60d8b
- bez média
- svazek
- eng
- eng
- Czech Republic
- 2021-06-01T12:19:28.026Z
- 2021-06-01T12:19:28.026Z