Download

Can I use it?

No Re-use

Attribute the author

?
The download has started. Retry
  • × pixels
Media Metadata
  • Creator
  • Description
  • Format
  • File size
  • Codec
  • Dimensions × pixels
  • Run time seconds
  • Source
  • Rights
  • Rights
[[#license_CC0]] [[license_name]] [[^license_name]] CC0 [[/license_name]] [[/license_CC0]] [[#license_CC_BY]] [[license_name]] [[^license_name]] CC BY [[/license_name]] [[/license_CC_BY]] [[#license_CC_BY_SA]] [[license_name]] [[^license_name]] CC BY-SA [[/license_name]] [[/license_CC_BY_SA]] [[#license_CC_BY_ND]] [[license_name]] [[^license_name]] CC BY-ND [[/license_name]] [[/license_CC_BY_ND]] [[#license_CC_BY_NC]] [[license_name]] [[^license_name]] CC BY-NC [[/license_name]] [[/license_CC_BY_NC]] [[#license_CC_BY_NC_SA]] [[license_name]] [[^license_name]] CC BY-NC-SA[[/license_name]] [[/license_CC_BY_NC_SA]] [[#license_CC_BY_NC_ND]] [[license_name]] [[^license_name]] CC BY-NC-ND[[/license_name]] [[/license_CC_BY_NC_ND]] [[#license_OOC]] [[license_name]] [[^license_name]] Out of Copyright [[/license_name]] [[ expiry ]] [[/license_OOC]] [[#license_PD_NC]] [[license_name]] [[^license_name]] Public Domain - non commercial re-use[[/license_name]] [[/license_PD_NC]] [[#license_public]] [[license_name]] [[^license_name]] Public Domain [[/license_name]] [[/license_public]] [[#license_RR_free]] [[license_name]] [[^license_name]] Rights Reserved - Free Access [[/license_name]] [[/license_RR_free]] [[#license_RR_paid]] [[license_name]] [[^license_name]] Rights Reserved - Paid Access [[/license_name]] [[/license_RR_paid]] [[#license_RR_restricted]] [[license_name]] [[^license_name]] Rights Reserved - Restricted Access [[/license_name]] [[/license_RR_restricted]] [[#license_unknown]] [[license_name]] [[^license_name]] Unknown copyright status [[/license_name]] [[/license_unknown]] [[#license_orphan]] [[license_name]] [[^license_name]] Orphan work [[/license_name]] [[/license_orphan]]

Title

CoQuS II Kick-Off Workshop. Teil 13. Lucia Hackermüller: Ultracold Fermionic Mixtures in Optical Lattices

Description

    • CoQuS II Kick-Off Workshop, also honouring Reinhold Bertlmann's 65th Birthday Mitschnitt einer Veranstaltung von Universität Wien, Technischer Universität Wien und Fonds zur Förderung der wissenschaftlichen Forschung am Donnerstag, dem 30. September 2010 im Christian-Doppler-Hörsaal der Fakultät für Physik der Universität Wien Teil 13. Lucia Hackermüller (University of Nottingham): Ultracold Fermionic Mixtures in Optical Lattices Ultracold fermions in optical lattices are a promising tool to simulate solid state physics, since they represent an ideal and highly tunable implementation of the Hubbard Hamiltonian. A proof of principle is to demonstrate a Mott insulating state, where repulsive interactions between the atoms lead to an insulating behavior in a half-filled conduction band. In our experiments we study repulsively and attractively interacting 40K atoms within the combination of a red-detuned dipole trap with a blue detuned lattice. This setup allows us to gradually transform the system from metallic to Mott-insulating and band insulating states. We measure the phase of the system by analyzing the system size and the number of doubly occupied sites and compare our findings to DMFT theory. In addition we investigate the dynamical behavior of interacting fermionic mixtures. We prepare a band insulating system and suddenly release it into a homogenous lattice. This allows us to study transport properties of the Hubbard model. INHALT ====== Kapitel Titel Position --------------------------------------------------------------------- 1. Vorspann 00:00:00 2. Simulating condensed matter physics 00:00:25 3. Ultracold fermions 00:06:49 4. The Hubbard model and HTc superconductors 00:11:29 5. Experimental results 00:18:08 6. Double well as a toy model 00:26:16 7. Comparison with theory 00:37:29

Properties

Time

  • Date:

    • [2011]
  • Period:

    • Early 21th century

Provenance

Copyright

  • Rights:

    • http://www.europeana.eu/rights/unknown/

References and relations

Find out more

View at University of Vienna .

Can I use it?

No Re-use
Entities